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Deformed Multiconformal Algebra and Its q-
Operator Product Expansion

E. H. El Kinani1
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The q-deformed multiconformal algebra is derived. The glq(n)-covariant oscillator
realization is given in the centerless case. The q-operator product expansion
realization is also given.

1. INTRODUCTION

In the last decade, a great deal of attention has been paid to the study

of quantum groups and quantum algebras (Drinfel’ d, 1986; Jimbo, 1985,

1986; MaÇ nin, 1988, 1991, Faddeev et al., 1987; Woronowicz, 1987; Pusz

and Woronowicz, 1989; Wess and Zumino, 1990). These new mathematical

structures have been applied to physical models, e.g., in conformal field
theories (Alvarez-GaumeÂet al., 1989; Moore and Reshetikhin, 1989; Bernard

and LeClaire, 1991) as well as in the vertex and spin models (De Vega, 1989,

Pasquier and Saleurs, 1990) and to quantum topics (see, e.g., Chaichian et al.,
1990). The q-deformation of creation and annihilation operators (Macfarlane,

1989; Biedenharn, 1989; Chaichian and Kulish, 1990; Kulish and Damaskin-

sky, 1990) was applied to construct different q-(super)algebras and generalized
statistics with violation of the Pauli principle (Greenberg, 1990; Mohapatra,

1990). Recently, Fleury et al. (1995) introduced multiconformal symmetry

in order to extend the infinite-conformal symmetry to n-dimensional space

(n . 2). Hence, the scale invariance in such a space can be applied to the

theory of (n 2 1)-branes which are (n 2 1)-dimensional extended objects

generalizing strings; these results can also be applied to critical phenomena
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in more than two dimensions, as well as in the theory of interacting spins

more general than Ising’ s model. The main idea of the present work is

to introduce the deformed version of multiconformal algebra and give its
realization in term of q-operator product expansions of the componants of

the q-energy-momentum tensor T(zl), l 5 0, 1, . . . , n 2 1.

The organization of this paper is as follows: In Section 2, we introduce

the multiconformal transformations and present a model of field theory

describing the bosomic case. In Section 3, we present the deformation of

centerless multiconformal algebra and its glq(n)-covariant oscillator realiza-
tion. Section 4 constructs the q-operator product expansion. Finally, Section

5 gives our conclusion and outlook.

2. CLASSICAL MULTICONFORMAL ALGEBRA

In this section, we briefly sketch the multiconformal transformations,

also called by Fleury et al. (1995) ª conformal-l ike transformations.º These

are the transformations which leave the n-metric tensor invariant up to a
scale factor on the multicomplex plane MCn (Fleury et al., 1993):

MCn 5 o
n 2 1

j 5 0

xje
j, xj P R (1)

where e is the fundamental unit satisfying the basic relation en 5 2 1. As in

the complex plane C, an element Z P MCn possesses an n-conjugate

z(l) 5 o
n 2 1

j 5 0

xj v 2 jle j (2)

where v 5 exp(2 p i/n).

Let us now introduce the lth differential operators, which will be useful

in what follows:

- (l) 5
1

n o
n 2 1

j 5 0

v 2 jle 2 j -
- xj

(3)

The transformation z(l) ® Fl(z
(k)) leaves the n-metric tensor invariant up

to a scale factor if and only if (Fleury et al., 1995)

- Fl

- z(k) 5 0, k Þ l (4)

Now, consider the infinitesimal transformations z(l) ® z8(l) 5 z(l) 1
e f l(z(l)) for n even. After a Laurent development of f l we obtain n copies of

the Virasoro algebras without central charge
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[L(i)
m , L(j)

n ] 5 d ij (m 2 n) L(j)
m 1 n (5)

where i, j 5 0, 1, . . . , n 2 1.

We note that the central charge of such an algebra exists only in the

case where i 5 j, and we obtain

[L(i)
m , L( j)

n ] 5 d ij(m 2 n) L( j)
m 1 n 1 d ij c j m3 2 m

12
d j

m 1 n,0 (6)

To end this section, we to note that in our previous paper (Ouarab et
al., 1998), we gave the fundamentals of multiconformal quantum field theory;

namely the Hermitian action for a multicomplex field c (z(0), z(1), . . . , z(n 2 1))

defined on the multicomplex plane. The action S[ c ] reads

S[ c ] , # MCn

d n s Jkl - k c - l c (7)

where d ns 5 dz(0) Ù dz(1) Ù . . . Ù dz(n 2 1) and Jkl is an n 3 n matrix such that
J kl 5 antidiagonal (1/n, 1/n, . . . , 1/n), which obviously reduces to the known

Polyakov one for n 5 2.

3. DEFORMED MULTICONFORMAL ALGEBRA AND ITS glq(n)-
COVARIANT OSCILLATOR REALIZATION

To begin with, let us consider the set of q-deformed centerless multi-
Virasoro generators which satisfy the relations

[L(i)
m , L(i)

n ](q(n 2 m)
,q

(m 2 n)
) 5 [n 2 m]q L(i)

m 1 n, i 5 0, 1, . . . , n 2 1 (8)

L(i)
m L( j)

n 5 qnmL( j)
n L(i)

m , i , j

where [x]q 5 (qx 2 q 2 x)/(q 2 q 2 1).

A realization of this q-algebra is given with the help of the glq(n)-

covariant oscillator algebra (Pusz and Woronowicz, 1989; Jagannathan et al.,
1992). The latter is generated by bj , b 1

j , Nj ( j 5 1, 2, . . . , n) and the corres-
ponding commutation relations:

b 1
i b 1

j 5 ! qb 1
j b 1

i , i , j

bi bj 5
1

! q
bjbi , i , j

bi b
1
j 5 ! qb 1

j bi , i Þ j (9)

bi b
1
i 5 1 1 qb 1

i bi 1 (1 2 q) o
n

k 5 i 1 1

b 1
k bk , i 5 1, . . . , n 2 1
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bnb
1
n 5 1 1 qb 1

n bn

[Ni , b 1
j ] 5 1 d ijb

1
j , [Ni , bj] 5 2 d ijbj i, j 5 1, . . . , n

where bi (b
1
i ) plays the role of annihilation (creation) operator and Ni plays

the role of number operator. Let us introduce the Fock-space basis ) n1, n2,

. . . , nn & . The number operators Ni (i 5 1, 2, . . . , n) act as

Ni ) n1, n2, . . . , nn & 5 ni ) n1, n2, . . . , nn & (10)

and the operators bi (b 1
i ) act as

bi ) n1, n2, . . . , nn & 5 ! q ( n
k 5 i 1 1nk[[ni]] ) n1, n2, . . . , ni 2 1, . . . , nn & (11)

b 1
i ) n1, n2, . . . , nn & 5 ! q ( n

k 5 i 1 1nk[[ni 1 1]] ) n1, n2, . . . , ni 1 1, . . . , nn &

Then from the above relations we obtain the relation between the

operators bi (b 1
i ) and the mode operators as follows:

bi b 1
i 5 q ( n

k 5 i 1 1Nk[[Ni]], i Þ n (12)

where the q-symbol [[x]] is defined as

[[x]] 5
qx 2 1

q 2 1
(13)

The state ) n1, n2, . . . , nn & is obtained from the ground state ) 0, 0, . . . ,

0 & by applying the creation operators as follows:

) n1, n2, . . . , nn & 5
(b 1

n )nn . . . (b 1
1 )n1

! [[n1]]! ? ? ? ! [[nn]]!
) 0, 0, . . . , 0 & (14)

Now we introduce the scale operators Qi 5 qNi (i 5 1, 2, . . . , n) which

act on the basis ) n1 n2, . . . , nn & as

Qi ) n1, n2, . . . , nn & 5 qni ) n1, n2, . . . , nn & (15)

From the relations (9), we have

[bi , (b 1
i )m] 5 q1 2 m[[m]] Qi Qi 1 1 ? ? ? Qn(b

1
i )m 2 1 (16)

In the case where the parameter q is chosen as the Kth primitive root

of unity, the dimension of the representation space becomes finite and we

obtain the operator identities (b 1
i )K 5 1 and (bi)

K 5 0.
Now we turn to the glq(n)-covariant oscillator realization of the q-

deformed centerless multi-Virasoro algebra. Let us introduce the operators

L(i)
m 5 Q 2 1

i ? ? ? Q 2 1
n (b 1

i )m 1 1bi (17)

For m $ 2 1 and for negative values m # 2 2, we use the same formulas

understood as monomials of b 1
i with negative powers.
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Theorem. The above generators L(i)
m for m P Z, i 5 0, 1, . . . , n 2 1,

satisfy the following q-commutation relations:

[L(i)
r , Li

m](q(m 2 r)/2
,q

(r 2 m)/2
) 5 [m 2 r] = qL

(i)
m 1 r, i 5 1, 2, . . . , n 2 1

L(i)
m L

( j)
m8 5 qmm8/2L

( j)
m8 L(i)

m , i , j (18)

where [A, B](q,p) 5 qAB 2 pBA .

These are exactly the relations of the q-deformed centerless multi-Vira-

soro algebra (8), where we have used the change ! q ® q.

The proof is easily given by using (9) and (16) and algebraic

manipulation.

Remark. Contrary to the undeformed case (5), the n-deformed copies

are noncommuting. The property that these copies do not commute leads us to

consider a new kind of symmetry deformation that is, to perform a deformation
which also breaks the ª chiralityº of the theory.

In order to determine the central extension, we adopt the method used

in Aizawa and Sato (1991). Let K be a commutative ring with a unit element

and A be a K-module.

Definition. The set A is called deformation of the Lie algebra over K
if there exists a bilinear mapping (X, Y ) ® [X, Y ] (X, Y P A) such that

A 3 A ® A

(X, Y ) ® [X, Y ]

which satisfies the following conditions for all elements X, Y, and Z P A:

1. [X, X ] 5 0.

2. [ e (X ), [Y, Z ]] 1 [ e (Y ), [Z, X ]] 1 [ e (Z ), [X, Y ]] 5 0 (q-Jacobi identity).

Here e is a deformation operator. We define the bracket product for

X 5 ( n P Z a i
n L(i)

n and Y 5 ( m P z a 8j
mL(j)

m (i, j 5 0, 1, . . . , (n 2 1), where a i
n and

a 8j
m P C, by

[X, Y ] 5 (XY )q 5 (YX )q (19)

and e as

e (X ) 5 o
n P Z

a i
n

qn 1 q 2 n

2
L(i)

n (20)

where

(L(i)
m L( j)

m )q 5
qmnL(i)

m L( j)
n 1 qnmL( j)

n L(i)
m )

2
if i Þ j

5 qn 2 mL( j)
nL

(i)
m if i 5 j (21)
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One can easily prove that conditions 1 and 2 are satisfied, hence the q-algebra

(18) is a deformation of multiconformal algebra over C.

To determine the central extension, we follow the method used in Aizawa
and Sato (1991). Note that the central extension exists only in the case where

i 5 j,

[L(i)
m , L(i)

n ](q(n 2 m),q(m 2 n)) 5 [n 2 m]qL
(i)
m 1 n 1 ci

q(m, n) i, 5 0, 1, . . . , n 2 1

(22)

where ci
q(m, n) satisfies the following relation:

ci
q(m, n) 5 2 ci

q(n, m) (23)

From the q-deformed Jacobi identity, we obtain

(qm 1 q 2 m)[n 2 l]ci
q(m, n 1 l) 1 cyclic permutation 5 0 (24)

Following the method in Goddard and Olive (1986), and after algebraic

manipulation, we find

ci
q(m, n) 5

[m][m 1 1][m] [m 2 1]ci

[2m][3]!
d n 1 m,0 (25)

where ci 5 (q2 1 q 2 2) ci (2, 2 2). Then the classical limit of (25) is exactly

the same as the usual center of the multiconformal algebra (6).

Next, we give the realization of the central extended q-multi-Virasoro

algebra using the method of the operator product expansion of the energy-

momentum tensor component T(z(i)).

4. REALIZATION OF THE OPERATOR PRODUCT EXPANSION

In this section, we give the q-operators product expansion of the q-

energy-momentum tensor component T(z(l)), l 5 0, 1, . . . , (n 2 1). Let

L(l)
m be the coefficient of the Laurent expansion of T(z(l))

L(l)
m 5

1

2 p i R 0
dz(l)m 1 1T(z(l)) (26)

where T(z(l)) is the lth component of the multi-tensor energy-momentum,

which is written as T(z(l)) 5 ( (m P Z) L(l)
m z(l) 2 m 2 2

.

Now, we introduce the q-product for two components of T(Z(z(0), z(1),

. . . , z(n 2 1)):

(T(z(i))T(w( j)))q 5 T(qz(i)) T(q 2 1w( j)) for i 5 j (27)

and for i Þ j, the q-product is defined such that
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(L(i)
m L( j)

n )q 5
(qmnL(i)

m L( j)
n 1 qnmL( j)

n L(m)
m

2
(28)

Now let us limit ourselves to the bracket of L(i)
m and L( j)

n for i 5 j, which is

expressed as

[L(i)
m , L( j)

n ] 5
1

(2 p i)2 R 0
dz(i) R 0

dw (i)

3 z(i)m 1 1w(i)n 1 1(T(z(i))T(w(i)))q 2 (T(w(i))T(z(i)))q

5
1

(2 p i)2 R 0
dz(i) R P

dw (i) z(i)m 1 1w(i)n 1 1(T(z(i))T(w(i)))q (29)

where P means the poles of the integrand (T(z(i))T(w(i)))q. We assume at that

the pole structure of (T(z(i))T(w(i)))q is

(T(z(i))T(w(i)))q 5
[w(i) - (i)

w(i)]

w(i)2[2w(i) - (i)
w(i)]

w(i)2 ci

(z(i) 2 w(i))4
q

1
1

(z(i) 2 w(i)) 1 T(q 2 1w(i))

qz(i) 2 q 2 1w(i) 1
T(qw (i))

q 2 1z(i) 2 qw(i) 2
1

1

z(i) 2 w(i) ( - (i)
w(i))qT(w(i)) (30)

where (z(i) 2 w(i))n
q and - (i)

q are the q-analogues of the distance and the ith
derivative, such that

(z(i) 2 w(i))n
q 5 &

n

k 5 1
(z(i) 2 w(i)qn 2 2k 1 1

)

(31)

- (i)
q 5

T(qz(i)) 2 T(q 2 1 z(i))

(q 2 q 2 1)z(i)

Inserting (30) into (29) gives

[L(i)
m , L(i)

n ] 5 A1 1 A2 1 A3 (32)

where A1,2,3 are given by

A1 5
1

(2 p i)2 R 0
dz(i) R P

dw (i) z(i)m 1 1w(i)n 1 1

3 (qn 1 1 1 q 2 n 2 1)
1

(z(i) 2 w(i))2
n

T(w(i))
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A2 5
1

(2 p i)2 R 0
dz(i) R P

dw (i) z(i)m 1 1w(i)n 1 1 1

(z(i) 2 w(i))
- (i)

q T(w(i))

A3 5
1

(2 p i)2 R 0
dz(i) R P

dw (i) z(i)m 1 1w(i)n 1 1 [m]

[2m]

1

(z(i) 2 w(i))4
q

In order to compute these integrals it is convenient to use

R 0
dw (i) w(i)n 2 1 F(w(i) - (i)

q )G(w(i)) 5 R 0
dw (i) w(i)n 2 1F( 2 n)G(w(i))

and the q-deformed residue formula

1

[n]!
- (i)n

q f(z(i)) 5
1

(2 p i) R P
dw (i) f(z(i))

(w(i) 2 z(i))n 1 1
q

After algebraic manipulation we reach the same equations as (22) and

(25).

Therefore, we conclude that the q-operator product expansion given in

(30) is a realization of a q-deformed multiconformal algebra with a central

charge.

5. CONCLUSION AND OUTLOOK

In this paper, I presented a q-deformation of multiconformal algebra for

the centerless case. The glq(n)-covariant oscillators were realized for this
case. By introducing the q-deformation of the Jacobi identity, we obtain

the q-analogue of central charge. The realization of the q-deformation of

multiconformal algebra with charge was given in terms of the q-operator

product expansion. Finally, I hope that the introduction of the q-operators

product expansion, which is a powerful tool in multiconformal field theory,

will be useful for q-deformed multiconformal field theory and for the construc-
tion of q-deformed extended objects.
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